As mentioned in a previous post, there is increasing evidence of adaptation to gluten consumption by humans. This adaptation is not genetic, but symbiotic. It appears that we have developed new symbiotic relationships with specific microorganisms to help us degrade gluten, and by doing so, being able to exploit an unnatural food source.
Aside from resistance to degradation by mammalian enzymes and creation of neo-epitopes from partial gliadin digested peptides, one common reason given for avoiding gluten by paleo advocates is its phytate content (1, 2). Phytate is an anti-nutrient which binds to and form complexes with proteins, lipids, carbohydrates, and metal ions (zinc, iron, calcium and magnesium) thereby reducing their bioavailability. Phytate is the common name for myo-inositol-(1,2,3,4,5,6)-hexakiphosphate (InsP6).
scienceblogs.com |
From its chemical structure, we can see that it is basically a myo-inositol with six phosphate groups. The ability to degrade InsP6 is conferred by phytases. There are three types of phytases, namely, 3-phytase, 5-phytase and 6-phytase. The differences between these phosphatases is the position on the inositol ring at which the initial attack of a phosphoester bond takes place. Thus, attack by different phytases produce different isomers. Phytase production and activity in humans is relatively low (mainly in the small intestine) (3), so the greatest source of phytases is the gut microbial community .
Gut flora phytase activity
Gut flora phytase activity
Of the Bifidobacteria species which predominate in the human gut, the B. catenulatum group (B. catenulatum and B.pseudocatenulatum) is the most common. Haros et al (4) examined the InsP6 degrading capacity of B.pseudocatenulatum ATCC2919, isolated from the human gut. It was found that B.pseudocatenulatum is able to degrade InsP6 in sequential dephosphorylations (starting in the 6-position of the myo-inositol ring, followed by the 5-position). The solubility of mineral chelates of myo-inositol phosphates is related to the number of phosphates per molecule. InsP6 and InsP5 have adverse effects on mineral absorption. On the contrary, breakdown products with 1,2,3-grouping interact specifically with iron, increasing its solubility and preventing its ability to catalyse hydroxyl radical formation. Overall, the mineral-binding strength to inositol phosphates becomes progressively lower when phosphate are removed from the molecule (with the exception of the 1,2,3-grouping mentioned above). B.pseudocatenulatum also showed selective adhesion to Caco-2 epithelial cells and tolerance to increased concentrations of bile, which reflects its adaptation to the human gut. A previous study (5) found that B.infantis is able to degrade 100% of InsP6, producing InsP3 as the main product. The optimal pH for the phytase activity of B.infantis was 6.0-6.5, with an activity of 51.2% at 37C; similar to that observed for B.pseudocatenulatum. Other Bifidobacteria species present in the human gut have also phytase activity, although to a lesser extent.
InsP6 antinutrient effect
Typically, InsP6 and fiber occur together in whole foods. This is problematic for analyzing the antinutrient effect of InsP6 as there is evidence that fiber also reduces mineral bioavailability (6). When given alone in animal models, InsP6 does not show toxic effects on bone minerals (7):
This suggests that its the combination of fiber and InsP6 which causes the antinutrient effect observed.
The type of fiber seems to be important on mineral bioavailability. The addition of FOS to a diet high in InsP6 improves cecal absorption of minerals and stimulates bacterial hydrolysis of InsP6 (8, 9), counteracting the negative effects of high doses of InsP6. Inulin has also shown to improve calcium balance and absorption (10). The importance of the fiber type on the effects of phytic acid is highlighted by a study in which healthy women following the recommended daily intake of fiber-rich wheat bread (300g/day) showed impaired iron status independent of the phytic acid content (11).
Anti-cancer properties
InsP6 is a broad-spectrum antioneoplastic agent in vitro and in vivo (12). Structurally, InsP6 is similar to D-3-deoxy-3-fluoro-ptdIns, a potent PI3K inhibitor. Accordingly, InsP6 is able to inhibit PI3K and ERK phosphorylation (13), thereby inhibiting AP-1 activation. InsP6 has also been shown to activate PKC delta and decrease phosphorylation of Erk1/Erk2 and Akt, causing upregulation of p27-Kip1 and reduction of pRb phosphorylation (14). Other protective effects include the induction of apoptosis by inhibiting the Akt-NFkB pathway and increasing cytochrome C release (15), downregulation of constitutive and ligand-induced mitogenic and cell survival signaling (showing different effects on ERK1/2, JNK1/2 and p38 in response to different mitogens) (16), its antioxidant effect (17), enhancement of NK cell activity (18), modulation of expression of TNF-alpha and its receptors genes (19), inhibition of angiogenesis (20) and metastasis, by modulation of integrin dimerization, cell surface expression and integrin-associated signaling pathway (lack of clustering of paxilin and reduced FAK autophosphorylation) (21, 22). Utilization of InsP6 has been shown to offer some benefits during chemotherapy (23) and future trials are on their way.
Are whole grains inherently unhealthy?
Because whole-grains and legumes are high in phytic acid, it is plausible to hypothesize that intake of these foods will reduce to some extent the risk of developing cancer. Whole-grain intake has been associated with reduced risk of cancers (24, 25) as well as intake of legumes (26). However, some studies have found no association (27, 28). Because of the nature of these studies, it is not possible to draw causative conclusions. Most people eating the supposedly healthy foods have low intakes of harmful foods, so the decreased risk in some studies might be due to the exclusion and not the inclusion of some foods. In either case, most studies have not observed an increased cancer risk associated with these foods*. Other food sources rich in phytic acid include nuts and cocoa.
Conclusions
The dangers of phytic acid have been overestimated. Contrary to popular the paleo belief, phytic acid might be beneficial in small doses and might have anticancer effects. As seen with gluten degradation by Rothia species, the phytase activity present in some exclusive human Bifidobacteria shows that adaptation to wheat/grains is indeed happening. Once again, the microbiota plays a dominant role.
From epidemiological data, foods with high phytate content are not associated with increased risk for several chronic diseases. As association doesnt means causation, we cannot conclude that whole-grains are healthy but we cant also conclude that whole-grains are unhealthy. With the increasing attention to paleolithic and similar diets, it is of utmost importance that all evidence is critically analyzed and reviewed. Making unsupported statements and cherry-picking data would only cause rejection by scientists. Dogma is not good in science (or in anything else, for that matter).
I dont recommend whole-grains and legumes because there are foods more nutritious, as well as because whole-grains and legumes are very high in carbohydrates. The potential benefits of phytate can be obtained by eating other phytate rich foods, such as nuts and cocoa; as well as soluble fiber and oligosaccharides as the main dietary fiber type. The problem with high levels of phytate is only relevant when the diet is deficient in micronutrients and essential food sources. Finally, maintaining a proper gut flora is essential for phytic acid metabolism and adequate mineral absorption.
*Any evidence of a significant increased risk from these foods would be greatly appreciated.
InsP6 antinutrient effect
Typically, InsP6 and fiber occur together in whole foods. This is problematic for analyzing the antinutrient effect of InsP6 as there is evidence that fiber also reduces mineral bioavailability (6). When given alone in animal models, InsP6 does not show toxic effects on bone minerals (7):
This suggests that its the combination of fiber and InsP6 which causes the antinutrient effect observed.
The type of fiber seems to be important on mineral bioavailability. The addition of FOS to a diet high in InsP6 improves cecal absorption of minerals and stimulates bacterial hydrolysis of InsP6 (8, 9), counteracting the negative effects of high doses of InsP6. Inulin has also shown to improve calcium balance and absorption (10). The importance of the fiber type on the effects of phytic acid is highlighted by a study in which healthy women following the recommended daily intake of fiber-rich wheat bread (300g/day) showed impaired iron status independent of the phytic acid content (11).
Anti-cancer properties
InsP6 is a broad-spectrum antioneoplastic agent in vitro and in vivo (12). Structurally, InsP6 is similar to D-3-deoxy-3-fluoro-ptdIns, a potent PI3K inhibitor. Accordingly, InsP6 is able to inhibit PI3K and ERK phosphorylation (13), thereby inhibiting AP-1 activation. InsP6 has also been shown to activate PKC delta and decrease phosphorylation of Erk1/Erk2 and Akt, causing upregulation of p27-Kip1 and reduction of pRb phosphorylation (14). Other protective effects include the induction of apoptosis by inhibiting the Akt-NFkB pathway and increasing cytochrome C release (15), downregulation of constitutive and ligand-induced mitogenic and cell survival signaling (showing different effects on ERK1/2, JNK1/2 and p38 in response to different mitogens) (16), its antioxidant effect (17), enhancement of NK cell activity (18), modulation of expression of TNF-alpha and its receptors genes (19), inhibition of angiogenesis (20) and metastasis, by modulation of integrin dimerization, cell surface expression and integrin-associated signaling pathway (lack of clustering of paxilin and reduced FAK autophosphorylation) (21, 22). Utilization of InsP6 has been shown to offer some benefits during chemotherapy (23) and future trials are on their way.
Are whole grains inherently unhealthy?
Because whole-grains and legumes are high in phytic acid, it is plausible to hypothesize that intake of these foods will reduce to some extent the risk of developing cancer. Whole-grain intake has been associated with reduced risk of cancers (24, 25) as well as intake of legumes (26). However, some studies have found no association (27, 28). Because of the nature of these studies, it is not possible to draw causative conclusions. Most people eating the supposedly healthy foods have low intakes of harmful foods, so the decreased risk in some studies might be due to the exclusion and not the inclusion of some foods. In either case, most studies have not observed an increased cancer risk associated with these foods*. Other food sources rich in phytic acid include nuts and cocoa.
Conclusions
The dangers of phytic acid have been overestimated. Contrary to popular the paleo belief, phytic acid might be beneficial in small doses and might have anticancer effects. As seen with gluten degradation by Rothia species, the phytase activity present in some exclusive human Bifidobacteria shows that adaptation to wheat/grains is indeed happening. Once again, the microbiota plays a dominant role.
From epidemiological data, foods with high phytate content are not associated with increased risk for several chronic diseases. As association doesnt means causation, we cannot conclude that whole-grains are healthy but we cant also conclude that whole-grains are unhealthy. With the increasing attention to paleolithic and similar diets, it is of utmost importance that all evidence is critically analyzed and reviewed. Making unsupported statements and cherry-picking data would only cause rejection by scientists. Dogma is not good in science (or in anything else, for that matter).
I dont recommend whole-grains and legumes because there are foods more nutritious, as well as because whole-grains and legumes are very high in carbohydrates. The potential benefits of phytate can be obtained by eating other phytate rich foods, such as nuts and cocoa; as well as soluble fiber and oligosaccharides as the main dietary fiber type. The problem with high levels of phytate is only relevant when the diet is deficient in micronutrients and essential food sources. Finally, maintaining a proper gut flora is essential for phytic acid metabolism and adequate mineral absorption.
*Any evidence of a significant increased risk from these foods would be greatly appreciated.
Haros M, Carlsson NG, Almgren A, Larsson-Alminger M, Sandberg AS, & Andlid T (2009). Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. International journal of food microbiology, 135 (1), 7-14 PMID: 19674804
Haros M, Bielecka M, Honke J, & Sanz Y (2007). Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. International journal of food microbiology, 117 (1), 76-84 PMID: 17462768